Telegram Group & Telegram Channel
Как обнаружить и смягчить эффект популярности (popularity bias) в рекомендательной системе

Алгоритмы рекомендаций часто усиливают популярность уже популярных видео — их всё чаще показывают, в то время как новые или нишевые остаются незамеченными. Это создает эффект «богатые становятся богаче».

🔍 Как обнаружить

Посмотрите на логи рекомендаций — если небольшая доля контента получает основную массу показов, это тревожный сигнал. Обычно это «голова» распределения (head), тогда как «хвост» (long tail) игнорируется.

🛠 Методы смягчения

Нормализация метрик (например, watch-time) с учетом числа показов — чтобы не усиливать положительную обратную связь.

Поддержка длинного хвоста: в механизме отбора кандидатов добавить специальную логику, продвигающую менее популярные видео.

Умное переупорядочивание (re-ranking): резервировать часть позиций в выдаче для менее популярных видео.

⚠️ Важно

• Слишком сильное наказание популярных видео может снизить удовлетворенность пользователя.

• Нельзя наказывать все тематики одинаково: специализированный контент может иметь честно низкие метрики, не из-за предвзятости, а из-за ниши.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/964
Create:
Last Update:

Как обнаружить и смягчить эффект популярности (popularity bias) в рекомендательной системе

Алгоритмы рекомендаций часто усиливают популярность уже популярных видео — их всё чаще показывают, в то время как новые или нишевые остаются незамеченными. Это создает эффект «богатые становятся богаче».

🔍 Как обнаружить

Посмотрите на логи рекомендаций — если небольшая доля контента получает основную массу показов, это тревожный сигнал. Обычно это «голова» распределения (head), тогда как «хвост» (long tail) игнорируется.

🛠 Методы смягчения

Нормализация метрик (например, watch-time) с учетом числа показов — чтобы не усиливать положительную обратную связь.

Поддержка длинного хвоста: в механизме отбора кандидатов добавить специальную логику, продвигающую менее популярные видео.

Умное переупорядочивание (re-ranking): резервировать часть позиций в выдаче для менее популярных видео.

⚠️ Важно

• Слишком сильное наказание популярных видео может снизить удовлетворенность пользователя.

• Нельзя наказывать все тематики одинаково: специализированный контент может иметь честно низкие метрики, не из-за предвзятости, а из-за ниши.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/964

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Библиотека собеса по Data Science | вопросы с собеседований from tw


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA